KaBaGe-RL: Kanerva-based generalisation and reinforcement learning for possession football
نویسندگان
چکیده
The complexity of most modern systems prohibits a handcoded approach to decision making. In addition, many problems have continuous or large discrete state spaces; some have large or continuous action spaces. The problem of learning in large spaces is tackled through generalisation techniques, which allow compact representation of learned information and transfer of knowledge between similar states and actions. In this paper Kanerva coding and reinforcement learning are combined to produce the KaBaGe-RL decision-making module. The purpose of KaBaGe-RL is twofold. Firstly, Kanerva coding is used as a generalisation method to produce a feature vector from the raw sensory input. Secondly, the reinforcement learning uses this feature vector in order to learn an optimal policy. The efficiency of KaBaGe-RL is tested using the “3 versus 2 possession football” challenge, a subproblem of the RoboCup domain. The results demonstrate that the learning approach outperforms a number of benchmark policies including a hand-coded one.
منابع مشابه
Count-Based Exploration in Feature Space for Reinforcement Learning
We introduce a new count-based optimistic exploration algorithm for reinforcement learning (RL) that is feasible in environments with highdimensional state-action spaces. The success of RL algorithms in these domains depends crucially on generalisation from limited training experience. Function approximation techniques enable RL agents to generalise in order to estimate the value of unvisited s...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملDynamic Generalization Kanerva Coding in Reinforcement Learning for TCP Congestion Control Design
Traditional reinforcement learning (RL) techniques often encounter limitations when solving large or continuous stateaction spaces. Training times needed to explore the very large space are impractically long, and it can be difficult to generalize learned knowledge. A compact representation of the state space is usually generated to solve both problems. However, simple state abstraction often c...
متن کاملEssex Wizards 2001 Team Description
This article presents an overview of the Essex Wizards 2001 team participated in the RoboCup 2001 simulator league. Four major issues have been addressed, namely a generalized approach to position selection, strategic planning and encoded communication, reinforcement learning (RL) and Kanerva-based generalization, as well as the agent architecture and agent behaviours.
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001